If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x^2=7^2
We move all terms to the left:
x^2+x^2-(7^2)=0
We add all the numbers together, and all the variables
2x^2-49=0
a = 2; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·2·(-49)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*2}=\frac{0-14\sqrt{2}}{4} =-\frac{14\sqrt{2}}{4} =-\frac{7\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*2}=\frac{0+14\sqrt{2}}{4} =\frac{14\sqrt{2}}{4} =\frac{7\sqrt{2}}{2} $
| 1/6(2.9)t^2+5.2t-200=0 | | 1/6(2.9)t^2+5.2^2=200 | | x^2=24.5 | | T(1.45t+10.4)=200 | | -12•c=12 | | 1=2+b/9 | | 4=2(-2+v) | | -7=r/3-10 | | 1=-1+r/5 | | 72=7(k+70 | | -3n-2-4=-9 | | 132=4(2-6b)+4 | | -321=-n+8(6n+1) | | 6u-19=17 | | (5/2-x)+(x-5/x+2)+(3x+8/x^2-4)=0 | | 6u−19=17 | | 5/2-x+x-5/x+2+3x+8/x^2-4=0 | | -12=n-7n | | 3x(9+4)=39 | | h-69/2=10 | | 1+2x-5=0 | | -9+10a=11 | | (2a+4)=6a-6 | | -56=4b+8 | | 4y+36=-7(y+9) | | 3(2/3x-12=180) | | 4y+36=7-(y+9) | | 9p-7=5+6p | | -7(v+9)=-2v-33 | | 9x-26=-2(x+2) | | 90+3x+7=180 | | 7(y-7)-5y=-37 |